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Controlling the complex Lorenz equations by modulation

G. Kociuba* and N. R. Heckenberg
Department of Physics, University of Queensland, St Lucia, Queensland, Australia

~Received 25 March 2002; published 12 August 2002!

We demonstrate that a system obeying the complex Lorenz equations in the deep chaotic regime can be
controlled to periodic behavior by applying a modulation to the pump parameter. For arbitrary modulation
frequency and amplitude there is no obvious simplification of the dynamics. However, we find that there are
numerous windows where the chaotic system has been controlled to different periodic behaviors. The widths of
these windows in parameter space are narrow, and the positions are related to the ratio of the modulation
frequency of the pump to the average pulsation frequency of the output variable. These results are in good
agreement with observations previously made in a far-infrared laser system.
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I. INTRODUCTION

Chaotic behavior occurs widely in nonlinear systems.
vestigation of general properties of such systems have sh
that there are features such as unstable periodic orbits
routes to chaos, which are common in all chaotic syste
This has opened up the possibility that there may be gen
ways to control such systems to periodic behavior, in spite
their individual differences. Current methods of control
chaos rely on the idea that a chaotic system has an attra
that is wound around an infinite number of unstable perio
orbits @1#. Control is achieved when one of those orbits
stabilized. One method of control is to apply feedback t
chaotic system, e.g., the Ott, Grebogi, and Yorke method@2#.
This has the advantage that only a relatively small pertur
tion, determined by the state of the chaotic system, is
quired to control a chaotic system. A disadvantage of t
method and its variations is the requirement that the com
tation time for the control algorithm must be faster than
average period of the chaotic system. There also exist n
feedback control methods, where the applied perturbatio
an accessible parameter is independent of the state o
system. This perturbation can be noise@3#, chaotic @4# or
periodic @5#. We have previously shown that our ammon
ring laser operating in the autonomous chaotic regime co
be controlled to periodic pulsations by modulation of t
pump power@6#. We found control to different periods, an
that the locking ratios between the pump modulation f
quency and the laser intensity output pulsation freque
was not restricted to one-to-one. Here we investigate the
fect of applying a periodic modulation to one of the syste
parameters of the complex Lorenz equation in the cha
regime. We choose these equations because it has
shown to be a simplified model of a traveling wave auton
mous laser@7#, so that we can compare our previous expe
mental results with this model. Control of the standard L
renz equations by modulation has previously be
demonstrated by replacing the Rayleigh parameterR by
R@11sin(vt)# @8–10#. Since we wish to model an autono
mous laser with a modulated pump, we cannot use th

*Electronic address: kociuba@physics.uq.edu.au
1063-651X/2002/66~2!/026205~5!/$20.00 66 0262
-
n

nd
s.
ric
f

f
tor
c

a

a-
-

is
u-
e
n-
of
the

ld

-
y
f-

ic
en
-
-
-
n

se

results as the transformation from the laser equations to
Lorenz equations assumes the pump is constant. Diffe
transformations must be made, which do not involveR ~see
the Appendix!. We show here that when the pump is mod
lated in our laser model, control to periodic behavior can
achieved. The total pump power is made to remain above
chaos threshold at all times, thus excluding a simple dela
bifurcation @11# as the control mechanism. In our recent e
periments we modulated the laser so that the total pu
power always remained above the chaos threshold@6#.

II. THE COMPLEX LORENZ EQUATIONS

We investigate numerically the effect of modulating
optically pumped autonomous ring laser above the ch
threshold. We use the Lorenz equations to model the sys
which is accurate for a two-energy-level system, or eve
three-level system in certain parameter regimes@7#. Previous
experiments have shown that an ammonia laser, which i
autonomous system, reproduces the same dynamics a
complex Lorenz equations@12#. The complex equations tak
into account the possibility that the cavity resonant f
quency is detuned from the atomic resonance in general
using this model we search for control to periodic pulsatio
that could be seen in autonomous lasers, and to investi
different types of locking ratios between the pump and la
output that may occur. The complex Lorenz equations ar

Ė52@~11 id!E2lP#,

Ṗ521/s@~12 id!P2ED#,
~1!

Ḋ5b/s@12D1 f ~ t !2 1
2 ~E* P1P* E!#,

s5k/g' , b5g i /g' ,

where E, P, and D are the electric field, polarization, an
inversion, respectivelyd is the detuning of the cavity reso
nance relative to the atomic line center;k, g' , andg i are
the electric field, polarization, and inversion decay rates,
spectivelyl is the average pump andf (t) is the modulation
applied to the pump. In our casef (t)5A sin(vt); and for
©2002 The American Physical Society05-1
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chaos to occur,k.g i1g' . This is known as the bad cavit
condition since a lossy cavity is required. The pump para
eter is written in the form

I p~ t !5l@11A sin~vt !#, ~2!

wherel is chosen such thatl2A.lch , wherelch is the
chaos threshold. Thus the pump parameterI p is always
above the chaos threshold. Since the energy into the las
varying, this directly effects the population inversion. Pre
ous work has been done using the standard Lorenz equa
where the pump parameterl was replaced byl@1
1A sin(vt)# @9#. Unfortunately, we cannot use this as a co
rect description of modulation applied to a laser, as the
version is not directly modulated in their case. Other auth
have theoretically found control@8,13# using the appropriate
form of the modulation for our laser, however, the total pum
power was below the chaos threshold at certain times,
there is a t1 and t2 such that l@11A sin(vt)#,lch for
2npt1,t,2npt2, wheren is any integer. This means tha
there is a periodic crossing of the bifurcation point. It h
been shown that such a crossing can result in stabiliza
@11#. Here we ensure thatl@11A sin(vt)#.lch for all t so
that this mechanism is not the cause of control.

To ensure that the modulated system was initially chao
we integrated Eq.~1! in the deep chaotic regime wherel
546 andA50 ~no modulation!.

Figure 1 shows the period of the signal for pairs ofv and
A. An integration mesh of 1200 points on thev axis and 12
points on theA axis was used, since the sensitivity of th
system tov was much greater than toA. Figure 1 shows

FIG. 1. Control to different periods with various combinatio
of v andA. Dark points represent control to the period shown
the number near the points. The light gray band indicates the
merical grid, 1200312. The vertical dashed line represents the
erage frequency~of 0.33 units corresponding to the scaled timekt
as shown at the end of the Appendix! of the unmodulated chao
whereA50 along this whole line. The gray box indicates the r
gion where higher resolution calculations were performed,
shown in Fig. 3
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there are islands of periodic response to modulation at v
ous frequencies and amplitudes of modulation.

Period 3 dominates the graph near the average pulsa
frequency of the unmodulated system shown as a vert
dashed line. The locking ratio, which is the ratio of the pum
modulation frequency (v) to the average pulsation fre
quency of the intensity, is 1/1 around this line, andp/q fur-
ther away from this line, wherep and q are integers. The
island of period 4 centered around the frequency 0.33 ha
locking ratio of 3/4. On the far left of the graph there is a
island of control to period 7, which has a locking ratio of 5/
Both of these states of control were found in our recent
periments@6#. The two corresponding~numeric! time traces
show control to period 4 and period 7 in Fig. 2 using typic
initial conditions. The lower trace in both plots is the ter
A sin(vt). The graph shows that the phase between the pu
modulation and the output intensity is fixed and commen
rate, since every 3 and 5 cycles of the pump for the up
and lower traces, respectively, brings the output inten
back to the start of period 4 and 7, respectively. Furt
analysis of Fig. 1 shows that the modulation frequency
fects the average pulsation frequency, even though the a
age power from the modulation remains fixed at the valuel.
For example, period 1 shown in the top far right of Fig. 1
locked in a 1/1 ratio with the pump, yet the locked frequen
is higher than the unmodulated chaos frequency by ab
10%. Figure 1 spans a large range of parameter space, s
calculated the periodicity for a particular initial conditio
over a narrower parameter range indicated by the gray bo
Fig. 1, at a much higher resolution. Figure 3 shows the res
Increasing the density of the integration mesh has reve
dynamics not seen in the previous calculation. For exam
a modulation amplitude of 0.25 in Fig. 1 only shows cont
to period 3; however, in addition to period 3, Fig. 3 show

u-
-

s

FIG. 2. Two numeric intensity time traces of control to perio
4 and 7, respectively, with locking ratios 3/4 and 5/7, respectiv
using typical initial conditions. The lower trace in both cases is
modulation, the top trace is the intensityE* (t)E(t). The time units
are scaled to the cavity decay ratek as shown at the end of th
Appendix. To check for stability we integrated both time traces
to a time of 1500 and found that the solution remained periodic
5-2
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periods 4, 5, 6, and 7 with a significantly narrower windo
of control in modulation frequency space than for period
All the periods in this figure have a locking ratio of 1/1. Th
result shows there are even more closely spaced uns
periodic orbits that have been controlled to a periodic sta

Experimentally we found control to periods 1, 3, 4, and
with locking ratios of 1/1, 1/1, 3/4, and 5/7, respectively@6#.
The amplitudes of modulation in all cases was 20%. T
numerical model agrees well with control to period 3, but t
amplitudes of modulation required for control are higher
periods 4, 7, and 1 where these are 60%, 50%, and 7
respectively. Since we only use 2000 initial conditions, it
possible that there are other initial conditions lying on t
chaotic attractor, which would lead to periodic behavior a
lower modulation amplitude.

We now investigate the Lyapunov dimension calcula
using the Lyapunov exponents@14# of the stabilized orbit
caused by the modulation of the pump. The dimension of
complex Lorenz system studied here is about 3.1. If
modulation frequency is not a harmonic of the pulsation f
quency of the unmodulated laser, or the modulation am
tude is too low, the dimension remains at about 3.1 as ca
seen by the gray lines in Figs. 4 and 5. When a periodic s
is found, the dominant Lyapunov exponent changes from
positive value to zero. All other eigenvalues are negative
the limit cycle is one dimensional, then there will be on
one Lyapunov exponent of value zero, and the others wil
negative. For a two-dimensional limit cycle~two-torus at-
tractor! there will be two zero-valued Lyapunov exponen
and for a three-dimensional limit cycle there will be thr
zero-valued Lyapunov exponents. We find these types
limit cycles occur in our numerical results. Figure 4 sho
control to period 4, and where chaos remains as a functio
modulation amplitude and frequency. The modulation ha
much larger impact on the dynamics of the system at
fundamental pulsation frequency~0.33! than at the rationa
harmonic (3/4)f 0 ~at approximately 0.25!. This is most
clearly seen by observing how the dimension of the ch
changes with amplitude and frequency in both cases. At

FIG. 3. Control to different periods with various combinatio
of v andA. The frequency corresponds to the scaled timekt.
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fundamental, the dimension of the chaos, even at sm
modulation amplitudes, drops slightly below 3.1 at the fu
damental pulsation frequency. This slight drop in dimens
becomes progressively deeper while approaching 3.0. O
it reaches 3.0 then the system is controlled to a periodic s
indicated by triangles in the figure. At the modulation fr
quency of 0.25, no such behavior in the chaos occurs
remains basically unchanged until the appropriate amplit
is reached, then the dimension drops suddenly to 3.0 and
system is controlled. Notice that the dimension of the sta

FIG. 4. A plot of the Lyapunov dimension of the modulate
system for different pairs of modulation frequency and amplitu
The chaotic regions are of dimension 3.1 and are indicated by
gray lines. The controlled system to period 4 has integer dimen
and is indicated by the black triangles, squares, and circles, w
represent dimensions 3, 2, and 1, respectively. The frequency
responds to the scaled timekt.

FIG. 5. A plot of the Lyapunov dimension of the modulate
system for different pairs of modulation frequency and amplitu
as in Fig. 4 but for period 7. The frequency corresponds to
scaled timekt.
5-3
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lized system can change to 3, 2 or 1. Dimension 3 app
first, followed by 2 and 1 confined within a narrow parame
space. At fixed amplitude, the dimension of the control
system depends on the modulation frequency. There is s
maximum width of modulation frequency around 0.3
which gives control; outside this range the system is chao
Figure 5 shows similar behavior except that control to per
7 with a dimension of 1 is very rare, but dimension 2 is m
common. This is in contrast to Fig. 4 where there were co
parable amounts of control to dimensions 1, 2, and 3.

We now investigate the dependence of control on the
tial conditions. We calculated a numerical solution to Eq.~1!
without modulation (A50), and took 2000~sequential!
points lying on the chaotic attractor as the initial conditio
for the system under modulation (AÞ0). We do this as we
assume the modulated system is initially free from modu
tion for a period of time such that the points in phase sp
lie on the attractor of this unmodulated system. The mo
lated system was integrated using the 2000 initial conditio
and for each initial condition we integrated the equations
different pairs of parametersv ~the modulation frequency!
and A ~the amplitude!. For these pairs of parameters a
initial conditions, the periodicity ofE* (t)E(t), the intensity,
was calculated. The solution was defined as periodic
particular initial conditionxi and its neighborxi 11 or xi 21
also gave a periodic solution. We found that if this did n
hold then the solution is not really periodic, as these po
do not give periodic solutions when slight modifications a
made to the integration routine. In the former case the s
tions remain periodic. The periodicity of the signal was th
calculated using the last half of the intensity time trace, th
ignoring any transient behavior that may have occurred.

Not all the points lying on the initially chaotic attracto
ended up on the limit cycle generated by the application
the modulation. Of the 2000 initial conditions used, only
small subset of these points (,5%) leads to control for a
particular modulation frequency and amplitude. One sho
note that these initial conditions cover only a very small p
of the five-dimensional chaotic attractor, so a more exha
tive coverage is required to make strong claims about ba
of attraction, but is computationally intractable as many m
lions of initial conditions would be required.

Figure 6 is a plot of the locking ratio as a function of th
applied modulation frequency. Each point on the graph c
responds to one of three amplitude values,A50.25, 0.275,
and 0.3, which are not distinguished in the figure. The sc
tered points represent uncontrolled states as the locking
is not rational. The gray lines represent control to period 7
amplitudesA50.25, 0.275, and 0.3, which is marked on t
figure. These lines correspond to a locking ratio of 5/7.
points on the graph correspond to particular initial con
tions, which in general are different from each other, b
some are the same. This information cannot be extra
from the figure. Control is not uniquely determined b
modulation frequency and amplitude alone. This is eviden
Fig. 6 by considering the modulation frequency 0.248 a
amplitude marked 0.275. The gray band corresponds to
trol as mentioned above, however, some of the scatte
points below this line also correspond to an amplitude
02620
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0.275~not evident in the figure!. These points do not corre
spond to control as the locking ratio is not rational. Thu
only some of the initial conditions lead to control. The gr
lines of control have a length that is determined by the co
bination of the maximum allowed frequency deviation fro
the center for fixed initial conditions and the maximum fr
quency deviation for a range of adjacent initial condition
Now if the frequency is shifted further, control to period 7
lost for all initial conditions and amplitudes tested. The r
sulting locking ratio for each initial condition in this cas
will vary from 0.67 to 0.7 as can be seen at frequency 0.2

III. CONCLUSION

We have shown that the complex Lorenz equations
scribing a chaotic autonomous laser can be controlled t
periodic state by modulating the pump parameter appro
ately. We find that there exist islands of control to vario
periods in modulation amplitude-frequency parameter spa
These islands are accessed only for a subset of the in
conditions that were used. The width of control in frequen
space is quite narrow, but increases with increasing mod
tion amplitude. Control is not as sensitive to the modulat
amplitude, although increasing the amplitude sufficiently c
change the period of control. The nonlinearity of the syst
has been successfully exploited since rational locking ra
of the pump to intensity output gave control. We have fou
similar behavior in the experimental results we obtained
ing a chaotic autonomous ammonia laser.

FIG. 6. Projection of the four variables: locking ratio, modul
tion frequency, amplitude, and initial conditions to locking ratio
modulation frequency. Only the amplitudesA50.25, 0.275, and
0.30 during control to period 7 are labeled. Other points are a m
ture of these three amplitudes and different initial conditions. Sc
tered points show uncontrolled behavior while a solid line rep
sents control to period 7. Notice the scattered points below the d
lines, which shows that modulation frequency and amplitude are
enough to control the system, since the only difference between
line and points here is the initial conditions. The frequency cor
sponds to the scaled timekt.
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APPENDIX

Starting with the Maxwell-Bloch equations,

Ė52k~11 id!E2
ivc

2e0
P,

Ṗ52g'~12 id!P2
iU 2

\
ED,

Ḋ52g i~D2D0!2
1

2i\
~E* P2P* E!, ~A1!

we make the transformation,

E5
2\

in12
Ag ig'E8, ~A2!

P522Ag ig'

e0\k

vcn12
P8, ~A3!

D5
2e0\kg'

vcU
2

D8. ~A4!

HereU25n12n12* , andd5(v2vc)/k. The lasing frequency
is pulled tov, and vc is the empty cavity frequency. Thi
gives

Ė852k@~11 id!E82P8#, ~A5!
s,

H

. E

ys

02620
Ṗ852g'~12 id!P81g'E8D8, ~A6!

Ḋ852g iS D82D0

vcU
2

2e0\kg'
D2g i~E8* P81P8* E8!.

~A7!

Modulating the pump power will lead to a modulation of th
population inversion, so we writeD05Dss@11 f (t)#, substi-
tuting l as

l5
vcU

2

2e0\kg'

Dss. ~A8!

Thus Eq.~A7! becomes

Ḋ852g i@D82l~11 f ~ t !#2g i~E8* P81P8* E8!.
~A9!

Finally, transforming only the static part of the pump

E85E,

P85lP,

D85lD, ~A10!

and rescaling timet5t5kt transforms the decay rates an
the result is Eq.~1!.
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