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Controlling the complex Lorenz equations by modulation
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We demonstrate that a system obeying the complex Lorenz equations in the deep chaotic regime can be
controlled to periodic behavior by applying a modulation to the pump parameter. For arbitrary modulation
frequency and amplitude there is no obvious simplification of the dynamics. However, we find that there are
numerous windows where the chaotic system has been controlled to different periodic behaviors. The widths of
these windows in parameter space are narrow, and the positions are related to the ratio of the modulation
frequency of the pump to the average pulsation frequency of the output variable. These results are in good
agreement with observations previously made in a far-infrared laser system.
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[. INTRODUCTION results as the transformation from the laser equations to the
Lorenz equations assumes the pump is constant. Different
Chaotic behavior occurs widely in nonlinear systems. In-transformations must be made, which do not invdR/ésee

vestigation of general properties of such systems have showhe Appendix. We show here that when the pump is modu-
that there are features such as unstable periodic orbits afk@ted in our laser model, control to periodic behavior can be
routes to chaos, which are common in all chaotic systemschieved. The total pump power is made to remain above the
This has opened up the possibility that there may be generighaos threshold at all times, thus excluding a simple delayed
ways to control such systems to periodic behavior, in spite obifurcation[11] as the control mechanism. In our recent ex-
their individual differences. Current methods of control of periments we modulated the laser so that the total pump
chaos rely on the idea that a chaotic system has an attractgpwer always remained above the chaos thresf&jld
that is wound around an infinite number of unstable periodic

orbits [1]. Control is achieved when one of those orbits is Il. THE COMPLEX LORENZ EQUATIONS
stabilized. One method of control is to apply feedback to a ) . ) )
chaotic system, e.g., the Ott, Grebogi, and Yorke mefihd We investigate numerically the effect of modulating an

This has the advantage that only a relatively small perturbaoptically pumped autonomous ring laser above the chaos
tion, determined by the state of the chaotic system, is rethreshold. We use the Lorenz equations to model the system,
quired to control a chaotic system. A disadvantage of thigvhich is accurate for a two-energy-level system, or even a
method and its variations is the requirement that the computhree-level system in certain parameter regiffdsPrevious
tation time for the control algorithm must be faster than theeXperiments have shown that an ammonia laser, which is an
average period of the chaotic system. There also exist norutonomous system, reproduces the same dynamics as the
feedback control methods, where the applied perturbation gfomplex Lorenz equatiorjd2]. The complex equations take

an accessible parameter is independent of the state of tHato account the possibility that the cavity resonant fre-
system. This perturbation can be noi&, chaotic[4] or ~ quency is detuned from the atomic resonance in general. By
periodic [5]. We have previously shown that our ammonia Using this model we search for control to periodic pulsations
ring laser operating in the autonomous chaotic regime couléhat could be seen in autonomous lasers, and to investigate
be controlled to periodic pulsations by modulation of thedifferent types of locking ratios between the pump and laser
pump power[6]. We found control to different periods, and output that may occur. The complex Lorenz equations are
that the locking ratios between the pump modulation fre-

guency and the laser intensity output pulsation frequency E=—[(1+i8)E—\P],
was not restricted to one-to-one. Here we investigate the ef-
fect of applying a periodic modulation to one of the system P=—1/6[(1-i8)P—ED]

parameters of the complex Lorenz equation in the chaotic

regime. We choose these equations because it has been . L @
shown to be a simplified model of a traveling wave autono- D=plo[1-D+f(t)-2(E*P+P*E)],

mous lasef7], so that we can compare our previous experi-

mental results with this model. Control of the standard Lo- o=«ly., B=yly.,

renz equations by modulation has previously been
demonstrated by replacing the Rayleigh paramd&eby  whereE, P, andD are the electric field, polarization, and
R[1+ sin(wt)] [8—10]. Since we wish to model an autono- inversion, respectively is the detuning of the cavity reso-
mous laser with a modulated pump, we cannot use theseance relative to the atomic line center, v, , andy| are
the electric field, polarization, and inversion decay rates, re-
spectively\ is the average pump arfdt) is the modulation
*Electronic address: kociuba@physics.ug.edu.au applied to the pump. In our cadgt)=A sin(wt); and for
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FIG. 2. Two numeric intensity time traces of control to periods
FIG. 1. Control to different periods with various combinations 4 qnd 7 _resp_eqlvely, W.'t.h locking ratios 3/4 ar_ld 577, respecgvely,
using typical initial conditions. The lower trace in both cases is the

of @ andA. Dark points represent control to the period shown by . ) . . .
the number near the points. The light gray band indicates the nurpodulatlon, the top trace is the intensiy (t) E(t). The time units

merical grid, 120 12. The vertical dashed line represents the av-ire :gg:id_rtg éﬂgccki\grys?a%(i:ﬁaty :Aalx:easteskrlggg ggtt: ?irﬁzdtrgf:ézeu
erage frequencyof 0.33 units corresponding to the scaled tirte PP ) Y 9 P

as shown at the end of the Apperidif the unmodulated chaos to a time of 1500 and found that the solution remained periodic.

whereA=0 along this whole line. The gray box indicates the re- .o o6 isiands of periodic response to modulation at vari-
gion where higher resolution calculations were performed, as . . .
shown in Fig. 3 ous fre;quenmes 'and amplitudes of modulation. .
Period 3 dominates the graph near the average pulsation
frequency of the unmodulated system shown as a vertical
dashed line. The locking ratio, which is the ratio of the pump
modulation frequency ) to the average pulsation fre-
quency of the intensity, is 1/1 around this line, gud fur-
Ip(t)=A[1+Asin(wt)], 2 ther away from this line, wherp and q are integers. The
island of period 4 centered around the frequency 0.33 has a
where\ is chosen such that—A>\.,, where\, is the locking ratio of 3/4. On the far left of the graph there is an
chaos threshold. Thus the pump parameteris always island of control to period 7, which has a locking ratio of 5/7.
above the chaos threshold. Since the energy into the laser Both of these states of control were found in our recent ex-
varying, this directly effects the population inversion. Previ-perimentg6]. The two correspondinghumerig time traces
ous work has been done using the standard Lorenz equatiogsaow control to period 4 and period 7 in Fig. 2 using typical
where the pump parametex was replaced by\[1 initial conditions. The lower trace in both plots is the term
+ A sin(wt)] [9]. Unfortunately, we cannot use this as a cor-A sin(wt). The graph shows that the phase between the pump
rect description of modulation applied to a laser, as the inmodulation and the output intensity is fixed and commensu-
version is not directly modulated in their case. Other authorsate, since every 3 and 5 cycles of the pump for the upper
have theoretically found contr$8,13] using the appropriate and lower traces, respectively, brings the output intensity
form of the modulation for our laser, however, the total pumpback to the start of period 4 and 7, respectively. Further
power was below the chaos threshold at certain times, i.eanalysis of Fig. 1 shows that the modulation frequency af-
there is at; and t, such thatA[1+Asin(wt)]<\, for  fects the average pulsation frequency, even though the aver-
2nwt,<t<2nwt,, wheren is any integer. This means that age power from the modulation remains fixed at the value
there is a periodic crossing of the bifurcation point. It hasFor example, period 1 shown in the top far right of Fig. 1 is
been shown that such a crossing can result in stabilizatiotocked in a 1/1 ratio with the pump, yet the locked frequency
[11]. Here we ensure that[1+ A sin(wt)]>\¢, for all t so  is higher than the unmodulated chaos frequency by about
that this mechanism is not the cause of control. 10%. Figure 1 spans a large range of parameter space, so we
To ensure that the modulated system was initially chaoticcalculated the periodicity for a particular initial condition
we integrated Eq(1) in the deep chaotic regime wheke  over a narrower parameter range indicated by the gray box in
=46 andA=0 (no modulation. Fig. 1, at a much higher resolution. Figure 3 shows the result.
Figure 1 shows the period of the signal for pairssofind  Increasing the density of the integration mesh has revealed
A. An integration mesh of 1200 points on theaxis and 12 dynamics not seen in the previous calculation. For example,
points on theA axis was used, since the sensitivity of the a modulation amplitude of 0.25 in Fig. 1 only shows control
system tow was much greater than th. Figure 1 shows to period 3; however, in addition to period 3, Fig. 3 shows

chaos to occurg>y|+ v, . This is known as the bad cavity
condition since a lossy cavity is required. The pump param
eter is written in the form
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FIG. 3. Control to different periods with various combinations ) )
of w andA. The frequency corresponds to the scaled tiche FIG. 4. A plot of the Lyapunov dimension of the modulated
system for different pairs of modulation frequency and amplitude.
periods 4, 5, 6, and 7 with a significantly narrower window The chaotic regions are of dimension 3.1 and are indicated by the
of control in modulation frequency space than for period 3.gray.lin.es.. The controlled system to period 4 has integgr dimensi.on
All the periods in this figure have a locking ratio of 1/1. This and is indicated by the black triangles, squares, and circles, which

result shows there are even more closely spaced unstapigPresent dimensions 3, 2, and 1, respectively. The frequency cor-

periodic orbits that have been controlled to a periodic state/€SPONds to the scaled tima.

Experimentally we found control to periods 1, 3, 4, and 7 ) )
with locking ratios of 1/1, 1/1, 3/4, and 5/7, respectivisy. fundamgntal, the_ dimension of_ the chaos, even at small
The amplitudes of modulation in all cases was 20%. Theénodulation amplitudes, drops slightly below 3.1 at the fun-
numerical model agrees well with control to period 3, but thed@mental pulsation frequency. This slight drop in dimension
amplitudes of modulation required for control are higher ford@comes progressively deeper while approaching 3.0. Once
periods 4, 7, and 1 where these are 60%, 50%, and 70%;,reaches 3.0 t_hen the _system_ls controlled to a perlt_)dlc state
respectively. Since we only use 2000 initial conditions, it isindicated by triangles in the figure. At the modulation fre-
possible that there are other initial conditions lying on theduéncy of 0.25, no such behavior in the chaos occurs. It
chaotic attractor, which would lead to periodic behavior at a€mains basically unchanged until the appropriate amplitude
lower modulation amplitude. is reachgd, then the dlme_nS|on drops §udder_1ly to 3.0 and the

We now investigate the Lyapunov dimension calculatedystem is controlled. Notice that the dimension of the stabi-
using the Lyapunov exponenid4| of the stabilized orbit
caused by the modulation of the pump. The dimension of the Period =7
complex Lorenz system studied here is about 3.1. If the
modulation frequency is not a harmonic of the pulsation fre-
quency of the unmodulated laser, or the modulation ampli- 3
tude is too low, the dimension remains at about 3.1 as can big
seen by the gray lines in Figs. 4 and 5. When a periodic state% 25
is found, the dominant Lyapunov exponent changes from ag
positive value to zero. All other eigenvalues are negative. IfS ,
the limit cycle is one dimensional, then there will be only &
one Lyapunov exponent of value zero, and the others will beg s
negative. For a two-dimensional limit cycléwo-torus at- %
tractop there will be two zero-valued Lyapunov exponents,
and for a three-dimensional limit cycle there will be three
zero-valued Lyapunov exponents. We find these types of
limit cycles occur in our numerical results. Figure 4 shows

no

0.25

control to period 4, and where chaos remains as a function o
. . . . . 0.3 . Fieq\)e“CY
modulation amplitude and frequency. The modulation has & ;. dulation
. . s) Mo
much larger impact on the dynamics of the system at the
fundamental pulsation frequenc.33 than at the rational FIG. 5. A plot of the Lyapunov dimension of the modulated

harmonic (3/4J, (at approximately 0.25 This is most system for different pairs of modulation frequency and amplitude,
clearly seen by observing how the dimension of the chaosas in Fig. 4 but for period 7. The frequency corresponds to the
changes with amplitude and frequency in both cases. At thecaled timext.
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lized system can change to 3, 2 or 1. Dimension 3 appear:
first, followed by 2 and 1 confined within a narrow parameter
space. At fixed amplitude, the dimension of the controlled
system depends on the modulation frequency. There is som
maximum width of modulation frequency around 0.33,
which gives control; outside this range the system is chaotic:%
Figure 5 shows similar behavior except that control to period & 71|
7 with a dimension of 1 is very rare, but dimension 2 is most§
common. This is in contrast to Fig. 4 where there were com-3 |
parable amounts of control to dimensions 1, 2, and 3.

We now investigate the dependence of control on the ini- ¢
tial conditions. We calculated a numerical solution to Hg.
without modulation A=0), and took 2000(sequentigl 0.68
points lying on the chaotic attractor as the initial conditions :
for the system under modulatiol ¢ 0). We do this as we ol P T i i i i
assume the modulated system is initially free from modula- 0241 0.242 0243 0244 0245 0.246 0247 0.248 0.249 0.25
. . . . . Modulation frequency
tion for a period of time such that the points in phase space
lie on the attractor of this unmodulated system. The modu- FiG. 6. Projection of the four variables: locking ratio, modula-
lated system was integrated using the 2000 initial conditionsion frequency, amplitude, and initial conditions to locking ratio vs
and for each initial condition we integrated the equations fofmodulation frequency. Only the amplitudés=0.25, 0.275, and
different pairs of parameter® (the modulation frequengy 0.30 during control to period 7 are labeled. Other points are a mix-
and A (the amplitude For these pairs of parameters andture of these three amplitudes and different initial conditions. Scat-
initial conditions, the periodicity oE* (t)E(t), the intensity, tered points show uncontrolled behavior while a solid line repre-
was calculated. The solution was defined as periodic if &ents control to period 7. Notice the scattered points below the dark
particular initial conditionx; and its neighboi;_ ; or x;_; lines, which shows that modulation frequency and amplitude are not
also gave a periodic solution. We found that if this did not&nough to control the system, since the only difference between the
hold then the solution is not really periodic, as these pointéi”e and points here is_ the initial conditions. The frequency corre-
do not give periodic solutions when slight modifications areSPoNnds to the scaled timet.
made to the integration routine. In the former case the solu-
tions remain periodic. The periodicity of the signal was then0.275(not evident in the figune These points do not corre-
calculated using the last half of the intensity time trace, thu%pond to control as the locking ratio is not rational. Thus,
ignoring any transient behavior that may have occurred.  only some of the initial conditions lead to control. The gray

Not all the points lying on the initially chaotic attractor |ines of control have a length that is determined by the com-
ended up on the limit cycle generated by the application opjination of the maximum allowed frequency deviation from
the modulation. Of the 2000 initial conditions used, only athe center for fixed initial conditions and the maximum fre-
small subset of these points<G%) leads to control for a quency deviation for a range of adjacent initial conditions.
particular modulation frequency and amplitude. One shoulgNow if the frequency is shifted further, control to period 7 is
note that these initial conditions cover only a very small partost for all initial conditions and amplitudes tested. The re-
of the five-dimensional chaotic attractor, so a more exhaussy|ting locking ratio for each initial condition in this case
tive coverage is required to make strong claims about basingill vary from 0.67 to 0.7 as can be seen at frequency 0.241.
of attraction, but is computationally intractable as many mil-
lions of initial conditions would be required.

Figure 6 is a plot of the locking ratio as a function of the
applied modulation frequency. Each point on the graph cor-
responds to one of three amplitude valuls;0.25, 0.275, We have shown that the complex Lorenz equations de-
and 0.3, which are not distinguished in the figure. The scatscribing a chaotic autonomous laser can be controlled to a
tered points represent uncontrolled states as the locking ratjgeriodic state by modulating the pump parameter appropri-
is not rational. The gray lines represent control to period 7 aately. We find that there exist islands of control to various
amplitudesA=0.25, 0.275, and 0.3, which is marked on the periods in modulation amplitude-frequency parameter space.
figure. These lines correspond to a locking ratio of 5/7. AllThese islands are accessed only for a subset of the initial
points on the graph correspond to particular initial condi-conditions that were used. The width of control in frequency
tions, which in general are different from each other, butspace is quite narrow, but increases with increasing modula-
some are the same. This information cannot be extractetion amplitude. Control is not as sensitive to the modulation
from the figure. Control is not uniquely determined by amplitude, although increasing the amplitude sufficiently can
modulation frequency and amplitude alone. This is evident irchange the period of control. The nonlinearity of the system
Fig. 6 by considering the modulation frequency 0.248 anchas been successfully exploited since rational locking ratios
amplitude marked 0.275. The gray band corresponds to comf the pump to intensity output gave control. We have found
trol as mentioned above, however, some of the scatteresimilar behavior in the experimental results we obtained us-
points below this line also correspond to an amplitude ofing a chaotic autonomous ammonia laser.
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APPENDIX P’=—7L(1—i5)P’+yLE'D’, (A6)
Starting with the Maxwell-Bloch equations, .
. oU
_ iw D'=—9|D'=Do5———| - »(E"*P'+P'*E’).
E=— k(1+i8)E— 2P, ” 2oty
260 (A7)
Pe o (1—i8)P— ﬁED Modulating the pump power will lead to a modulation of the
== 7(1-i9) 13 ’ population inversion, so we writ®,=D¢J 1+ f(t)], substi-
tuting A as
. 1
D:—y”(D—DO)—m(E*P—P*E), (A1) w U2
=-——D... (A8)
_ 2eghky,
we make the transformation,
s Thus Eq.(A7) becomes
E=i—\/'y||’ylE', (A2) .
V12 D'=—’yH[D,—)\(l'f'f(t)]—’yH(E'*P,‘FP/*E/).
5 (A9)
— 60 K !
P==2Vym wcvlzp : (A3) Finally, transforming only the static part of the pump
2eph k E'=E,
p=""Tp (Ad)
U P'=\P
HereU?=v,,v%,, and6=(w— o)/ k. The lasing frequency
is pulled tow, and w, is the empty cavity frequency. This D'=\D, (A10)

gives
and rescaling timé= 7= «t transforms the decay rates and

E'=—«[(1+i8)E —P'], (A5)  the result is Eq(2).
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